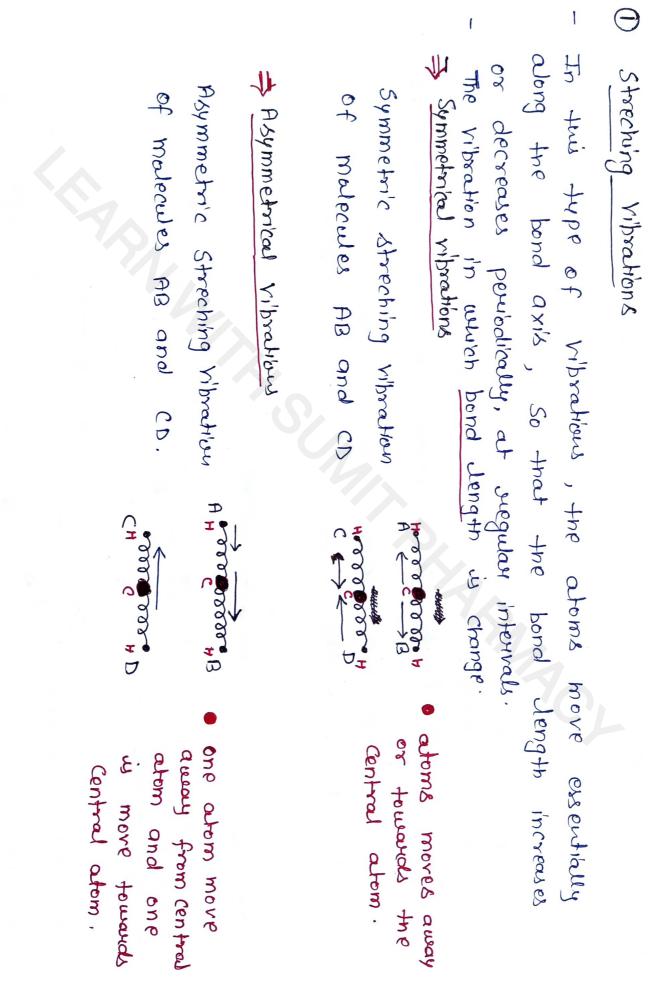

Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

- If alling molecules present in sample shows Vibrational and Rotational energy then we can Identify the compound by IR spectroscopy. Shows 4 energy	- it is valid for the dipale compounds. [Such compounds having dipale moment value = 0 (Not value) - In IR Spectroscopy only Two types of	- ut is based on absorption Spectroscopy.	is a <u>Qualitative analysis</u> of unknown sample. determine structure and functional group <u>Sual</u>	* Basic Introduction to IR-Spectroscopy and fundamentals	UNIT-2 CHAPTER-1 IR SPECTROSCOPY Lecture-1 Intro. to IR Spectroscopy
Shows 4 types of energy - Vibrational - Transition - Rotattional	(Qualitative anylysis & Qualitative anglysis)	d state.	Harysis quantitative.		



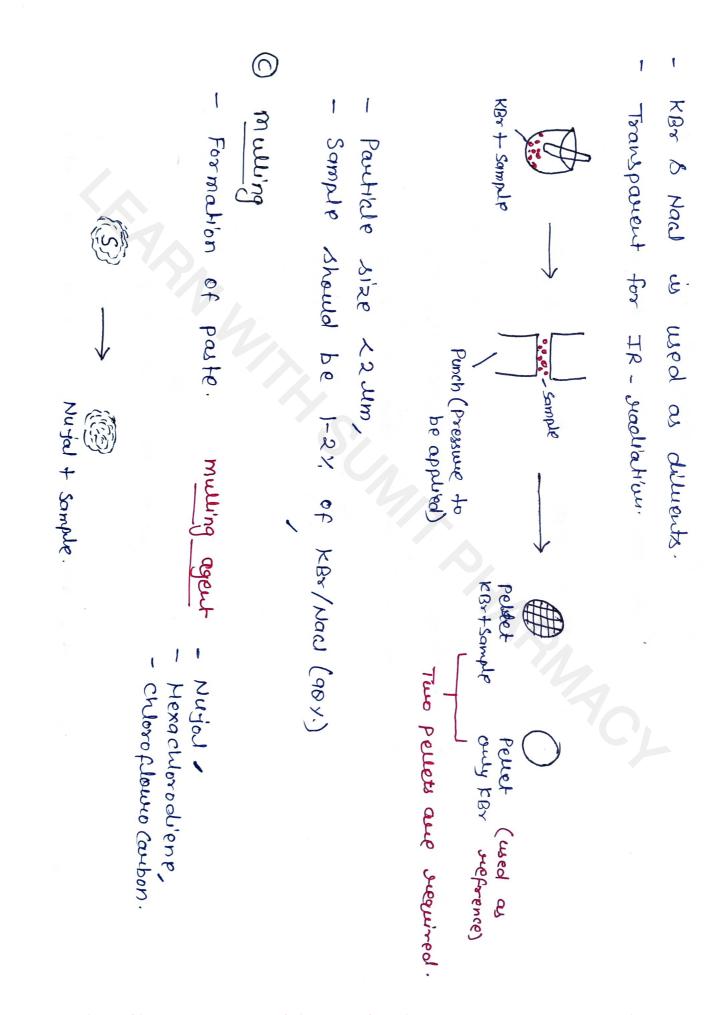
n = 1	- In IR Spectroscopy we analysis (not wavelength).	waveleng Hy 0.8 u - 2 5 u (2500 cm - 4000 cm -)	Energy Near IR	 IR (an be measured on the basis Interpretation of the basis Interpretations Interpretations 	- we know Energy
A n= wave number.	Can use we	$(40000 \text{ cm}^{-1} - 667 \text{ cm}^{-1}) = (677 \text{ cm}^{-1}) = (677 \text{ cm}^{-1}) = (677 \text{ cm}^{-1}) = 500 \text{ cm}^{-1})$ $\text{mid} \text{ scange IR is} = 15 \text{ cm}^{-1} = 500 \text{ cm}^{-1})$ $\text{used in IR Spectro.} = 10^{\circ} \text{ scm}^{-1} = 500 \text{ cm}^{-1}$		e can be	Knew Energy (E)= f (Energy RE inversely proportional Energy) wavelength f
	ber for	For converting wanting wavelength int cm.	Energy V	devided.	rtitual to wavelengt

	·	ł	*
IR Active comp Fundamental Vibrations	due to . Structure functional functional	en hi	Fundamental The basic
Active Active	and grow) LE	
Active compounds	moveme this up is	and unotational IR - active ce	
	movement they shows this strecting str up so use can easily up is present in	any IR - active compound t shows vibrational and	Modes of Vibrations in principle of IR-Spectroscopy
Vibrational Jotational	hg struc con casily d in ou		in p
	12151	ng and mover absorb the	paly-atomic
movement movement Symmitrical Asymmitrical Asymmitrical Rocking Rocking Wagging	J.T.	mends. IR -	c molecules defermine
Stauchung	fingenprive mini	stadiation	les
Structure.			the

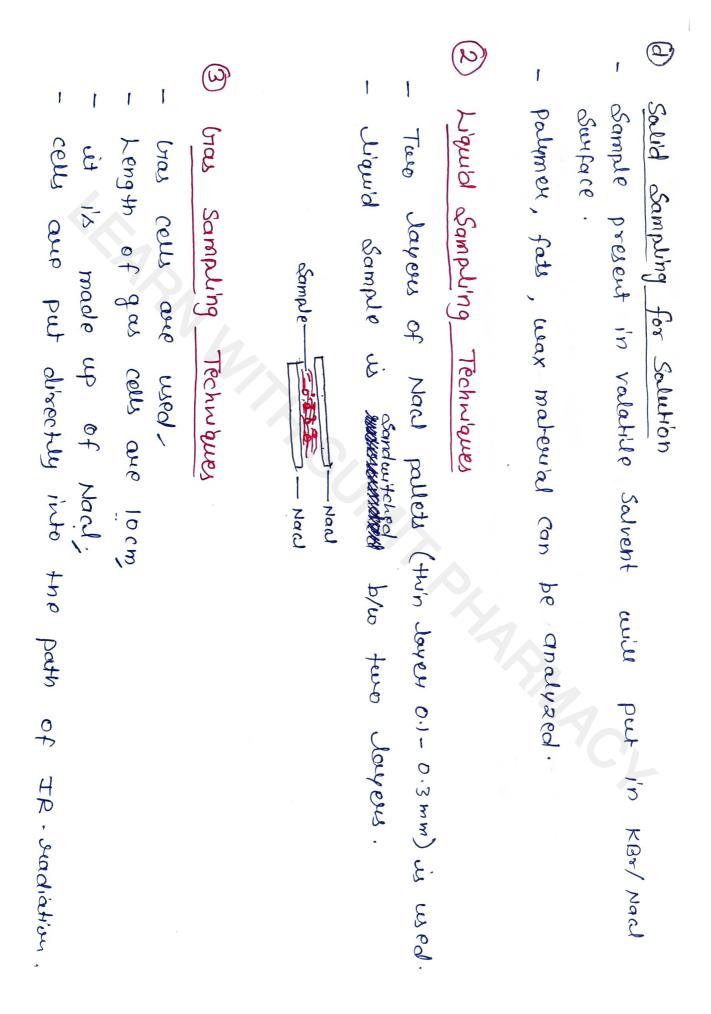
) (1 (2))
- Wagging Vibratton OUT OF PLANE_ Twisting Vibratton - Wagging Vibratton OUT OF PLANE_ Twisting Vibratton - when a non-lineary - when a non-dineary - when a non-lineary - when a non-dineary -	when the same structural atoms moves back atoms moves back and fourth to Bach other H	- Scissoring Vibration IN-PLANE - Rocking Vibrations	- A type of vibration in which bond angle is change. - A type of vibrations are also called deformation vibrations. - Bendling vibrations are also called deformation vibrations.	Bending Vibration In this type, there occurs a change in bond angues between bonds with a common atom or there occurs the movement of a group of atoms with subsect to the subminder of the malecule without movement of the atoms in the group with subsect to one	

ť	ſ	\bigotimes				1	Θ	*
The carbonyl group or aromatic rulas present in the same malecule O-H or N-H group may cause similar	The hudrogen bonding present in O-H and N-H ampunds give unlse to a number of effects in the IP-Spectra.	Hydrogen bonding	I	H-C-> Equivalent couple vibration.	C-H -> One streewing frequency. H-C -> Two coupled vibrations having different frequencies. H-C -> Two Coupled vibrations having different frequencies. H i.e. Vanti & Vsymm. (for Asymmetric and symmetric)	The following four vibrations may be observed in the lugh seesalution spectra of compounds containing both - CH2 and -CH3 groups.	Vibrational Compling	Factors Affecting Vibrations

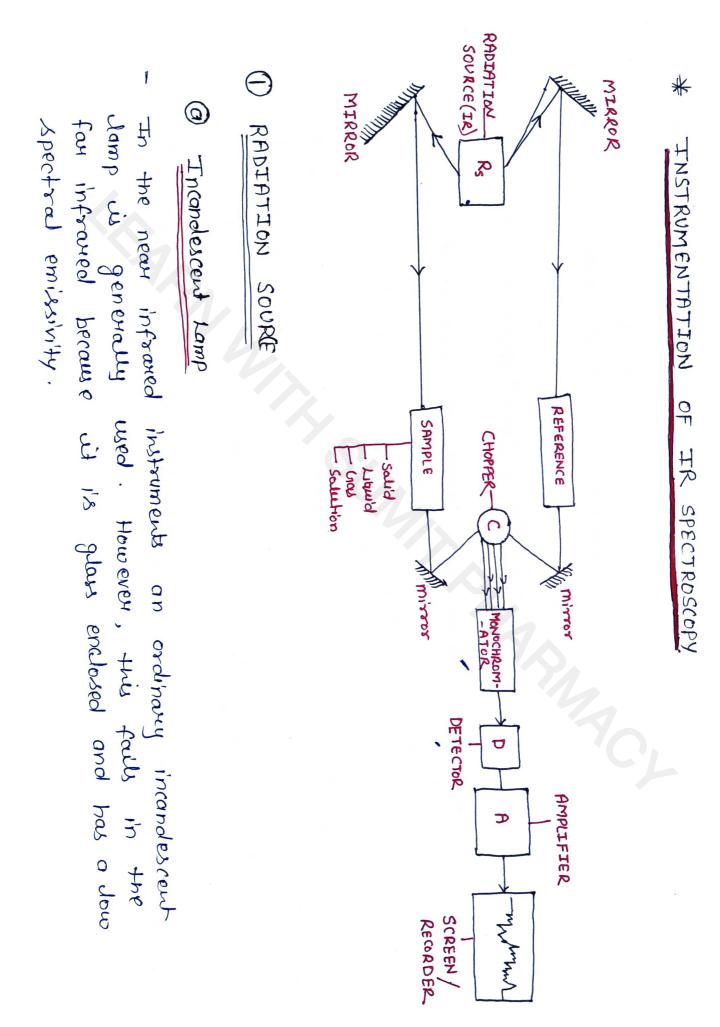
Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube


	cities hater modecular action.
--	--------------------------------

 Field effects These effects can be seen when two functional groups inpluence each other's vibrational prequencies by a through space interaction that may be either steric or electrostatic in nature: electrostatic in nature: electrostatic acid esters 	C Inductive effect depends upon the "intrinsic" - The inductive effect depends upon the "intrinsic" tendency of a substituent to either sublease or with abraw electrons i.e. its electronegativity acting either through the malecular chain or through space. This effect usually exercises steadily with increasing distance from the Substituent.	electrons, i.e. by structures that have the same amangement of atomic nuclei. There is suesonance.
---	---	--

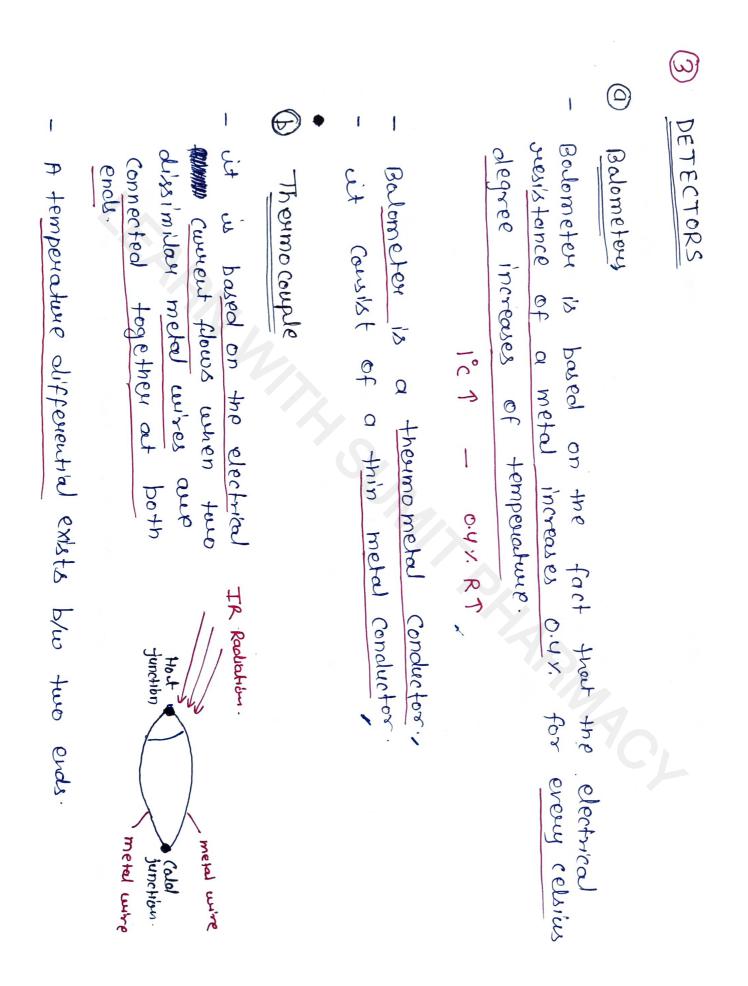

Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

Sample Handling Techniques in IR Spectroscopy There are 4 types of Sampling - Salid Sampling Technique - uit is done by 4 methods Direct Sampling method - uit is a simplest method. One sample holder is their and have to put sample on uit. (b) <u>Fellatization technique</u> - we use some alkyl halides and they are able to pass IR succliation. - eg. Kar, raal wed for preparing pellet with sample.
--


Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

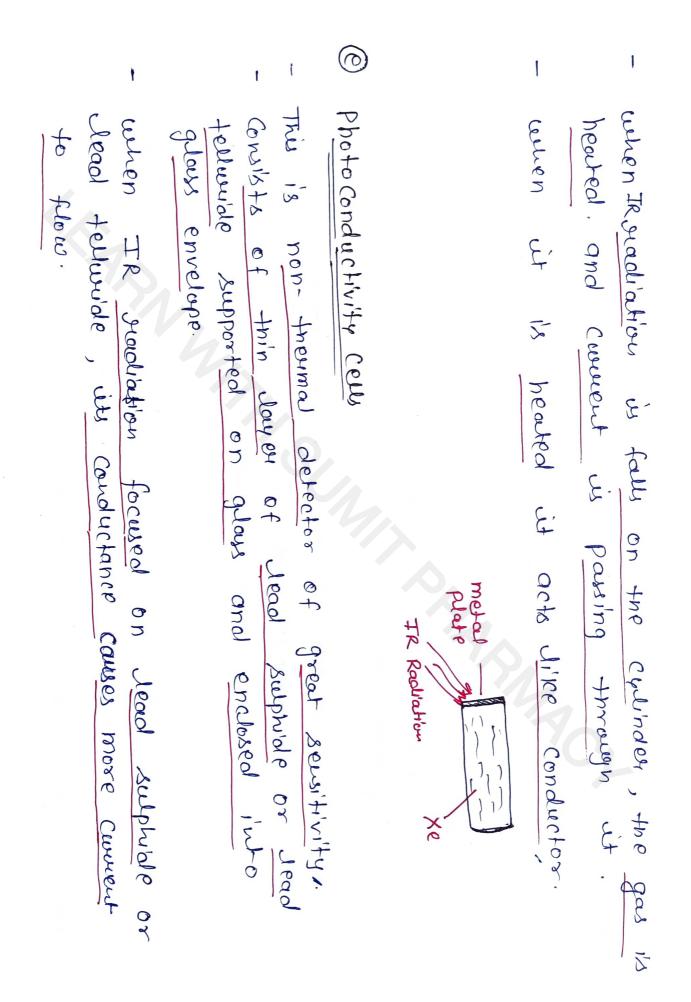
	 (4) Salution Sampling Technible (4) Salution Sampling Technible (4) (Chloroform), (Coly (Carlbon tetra chlorible), CS2 (Carlbon disulphible) (5) (Chloroform), (Coly (Carlbon tetra chlorible), CS2 (Carlbon disulphible) (4) These solvents are used to dissolve various samples, After These solvents are used to dissolve various samples, After These solvents are used in the form of solution, After NOTE - In all sampling technibules are have to avoid the use of under
--	---


Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

1	1 1	I	t	1 💬
It emits the IR readiation over unde wavelength Junge (Far IR)	tenperature b/w lovo - 1800°C, 2roz 203 provible mox. stadiation at about 7100 cm ⁻¹ 97:7:3 (Ratio)	ut is non-conducting at shown temprature and must be heated by external means to bring it to a conducting state.	diameter and somm in very m. The glower in composed of name earth oxides such as zirconia oxide (zroz), yttria oxide (yzoz), Thoria oxides (Eroz)	nower ists

(A) Parism - these made halide	1 1	1 1 1	1
 Prism Prism These and And of Alkali metal metal made up of Alkali metal halides. C.g. J. K., Rb, Nacl etc. B. Unrating XXXX - Series of prisms. Interview of Alkali metal metal prism. 	Monochromators converts polychromatic light into monochromate Light. These and of two types intrating,	Required temperature for heating is 1300-1100 C. It emits max stadiation at szon cm?. it is a dess intense source than the source that the source that the source t	· · · ·


Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

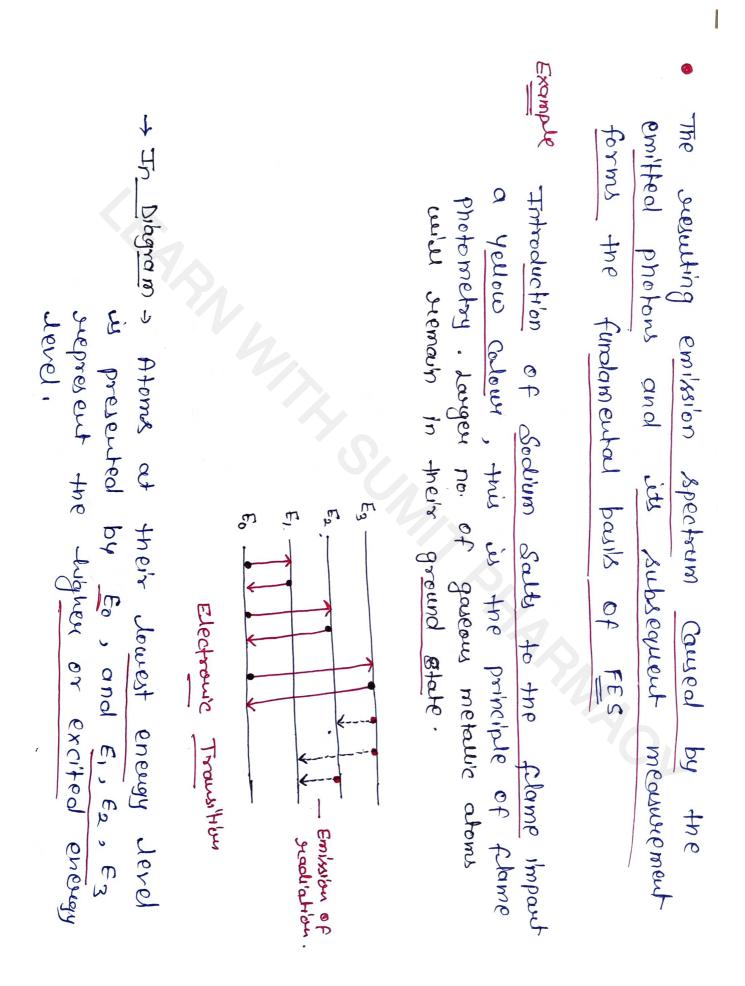
ł	0		1	\bigcirc	1	r t	
it contain a metal cylinder and Xenon (Xe) is filled inside.	Gralay Cel	Per oc.	when Temp. T, the electrical substance &	mistors	The electricity flow is directly proportional to the energy differential b/w the two connections. L.	The other connection, the cold junction, is thermally insulated and carefully screened from stray light.	The end exposed to the infrared seadiation is called the Hot Junction".

Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

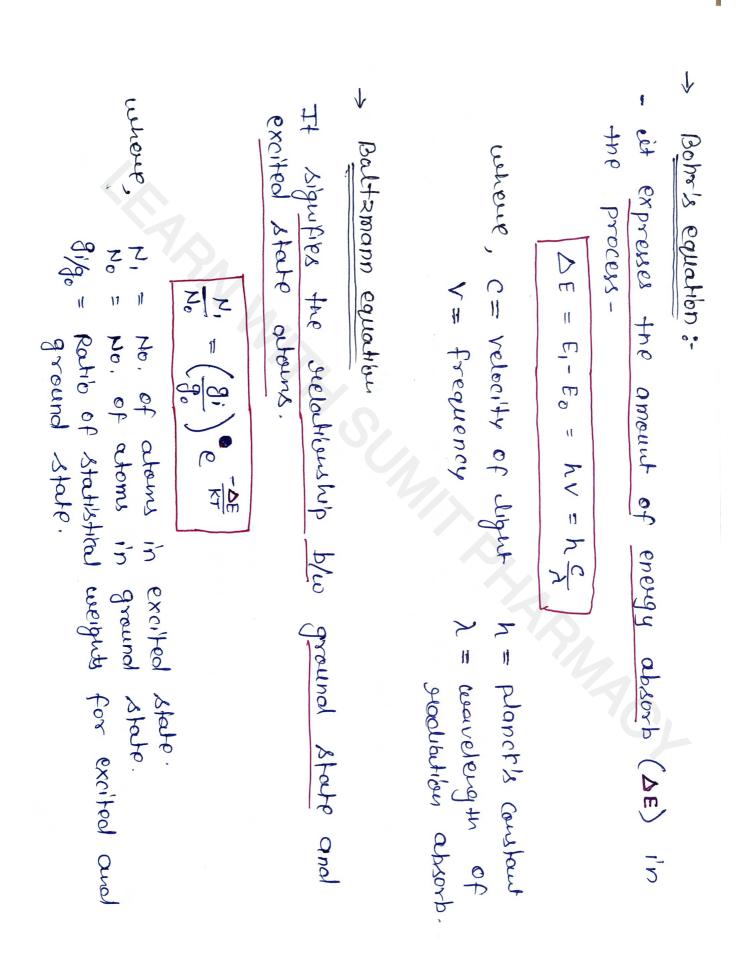
Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

1	1	ł	٢	
The most common pyroelectric is trigly count of Suprotections is trigly counted above uses above us	A pyroelectric flake is cut from a single crystal and is very small (0.25 to 12 mm²)	A pyro electric detector ausilities of a thin di-electric flake, when temp of place change an electrostatic change appears, This happens upon exposure to	But ferroelectric compound subain a strong residual polarization. Sometimes their residual polarization is temperature sensitive. Such materials are pyroelectric.	Pyroelectric detectors when a dielectric placed in an electrostatic field become palaxized. If the field is summered palawization disapponed.

> 1 ١ Now They and deuterated detector of chatce TUBS detectors ew H used founder transform TR 4 scoom temp

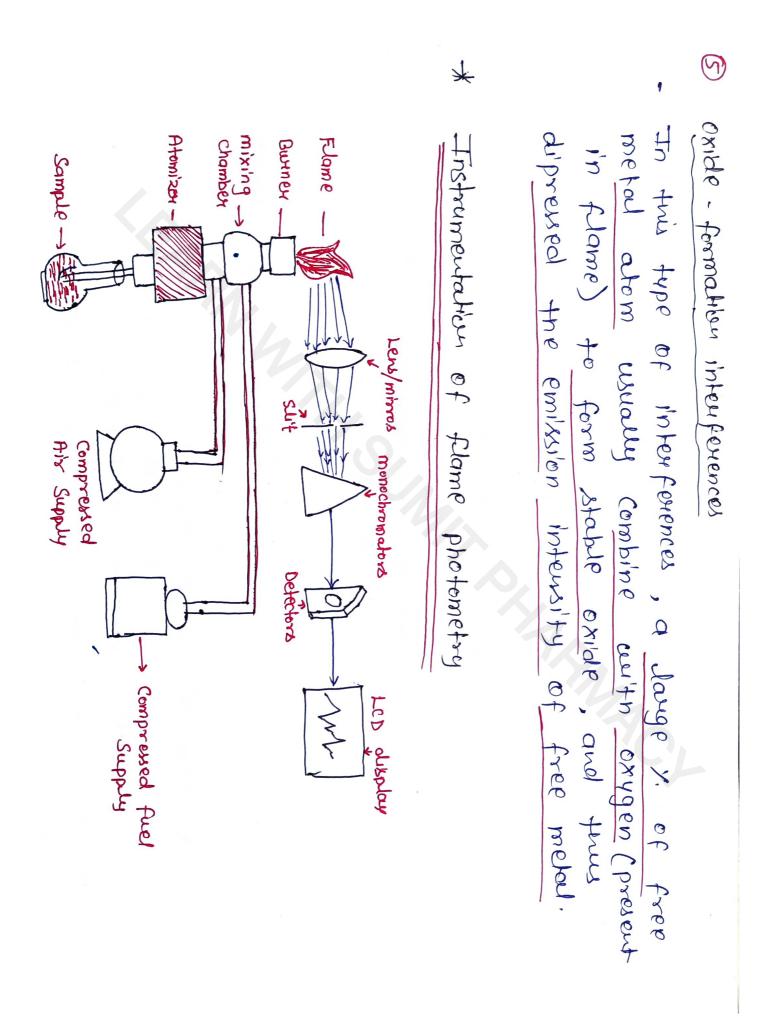

	\bigcirc	6	J	(\mathfrak{A})	Θ	¥
 miscellaneous Examples - Determination of punity. shape of symmetry of a moderate presence of acater in Sample. measurment of paints and variables. Examination of all paintings and Artifants. In industry. 	Identification of functional groups.	Isomeulsm in organic chemistry.	Studying of progress of Reactions.	Defey mination of moleculary Structure.	Identification of Substances	Applications of IR - Spectroscopy

Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube


Elame (1111) metaule sout in an (energy Source) (energy Source)	- Flame photometry is also named as flame emission spectrusopy because of the use of a flame to provible energy of excitation to atoms introduced into the flame.	- The wavelength of the calour tells us what the element is, and the calour's intensity tells us how much of the element is present.	- Flame photometry is based on the measurement of intensity of the light emitted when a metal is introduced into a flame.	Introduction To FLAME PHOTOMETRY	CHAPTER-2 FLAME PHOTOMETRY
--	---	--	---	----------------------------------	----------------------------

The sould salt undergoes reported to draw get convented into its respective gaseous state. All gaseows materials gives subse to free neutral atoms or sudicals. (free E) 1 Neutral atoms are excited by thermal energy of the flame which are fairly unstable and hence, instantly emit photons and eventually oretwen to the ground state.	emiksion Spectroscopy (FES) may be sample <u>containing metallic Salt sa</u> <u>gation is introduced litto a flame</u> normally take place in quick s salvent gets evaporated leaving be solvent of solut.	
--	---	--

Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube


Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

- They are either to close, or due to high Conc? of salts i	() <u>spectral</u> interferences - uit occurs when the emilision L Can not be subsolved or avuises of flame uitself:	- Some of commandy encountered in flame photometry and -	- In determining the amount of a present the ather and the amount of a	* Interferences	$\Delta E = Energy of excitation (hv) K = Boutzman Constant: T = Absounde tempendune (K).$
in the sample.	when ef two elements es from the background	interference process	also affect the mesult		

Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

(C)		0
Alter - Cation interferences :- These interference are neither spectral ner ibru's in nature: E.g. aluminuum interferences with cation and magnesium.	metal atoms. E.g. <u>sodium</u> Ma <u>is nav</u> <u>required</u> iousianius of some <u>aun</u> <u>unith</u> frequencies <u>on eminsion</u> <u>spectrum</u> of <u>ids</u> <u>aun</u> <u>unith</u> frequencies, <u>unich</u> <u>asc</u> <u>aliff</u> . from <u>these</u> of <u>atomic</u> <u>spectrum</u> of <u>the</u> <u>Na</u> <u>atom</u> . ation. Aubun interferences: <u>The presence of centrain auturs</u> , <u>such as exalate</u> , <u>phasphate</u> , <u>suchbate</u> , in a <u>sauthion</u> may <u>affect</u> <u>the intensity of stachabor</u> <u>emitted</u> <u>by an element</u> .	inter perence s-

mirrors (3) monochromators (4) Filleys In flame photometer, sevenal burneys and fuel-existent combinations have been used to produce the analytical flame. Total consumption burney. Premix of laminax-flow burney. Premix of laminax-flow burney. Lundergraph burney. Lundergraph burney. Lundergraph burney. Much of the sublation in Space. Signal a sesult in Space. Analysis, a mirror is located in the analysis, a mirror is located belvind
--

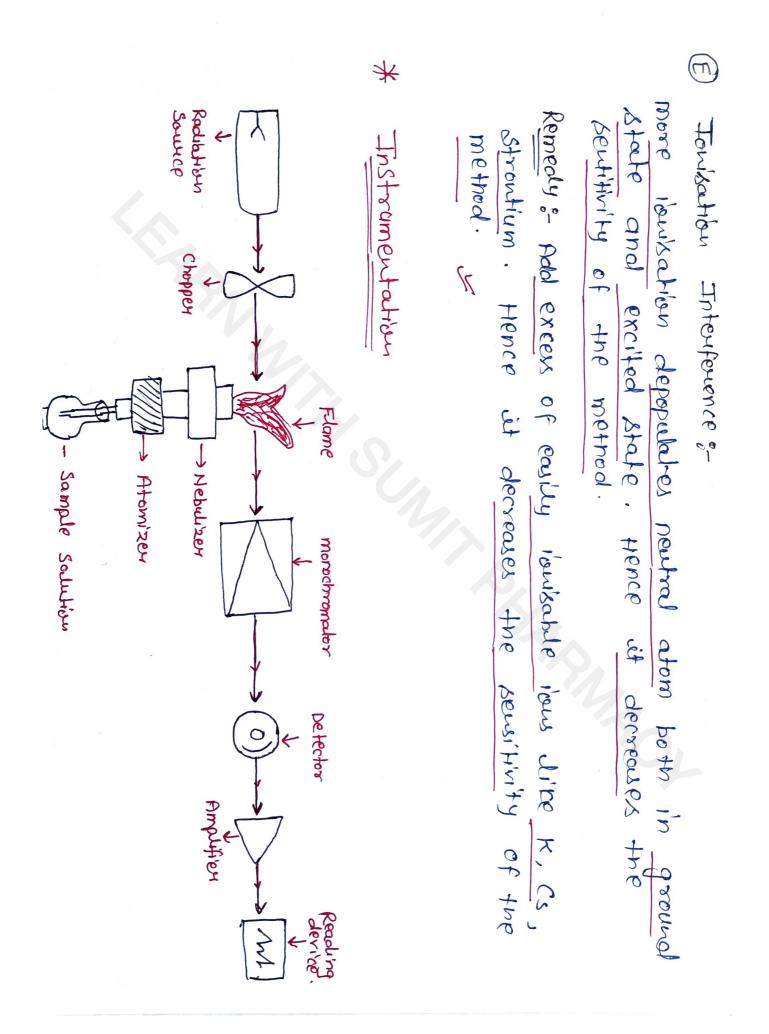
Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

						I	
over a naurow spectral Junge.	- In such a situation, an optical fuller may be used in place of shit and monochromater system. The fuller is made from such a material which is transporent	- In some elements the emission spectrum andalis of few lines. In such ases while wavelengths will be allowed to enter the detector without causing any services expror.	Fillery	- convert palychromatic light into monochromatic light. - prismy are most commonly made by Quartz.	menochromators	- This mirror is conceve and covers as which a salid angule from the flame as possible.	the burney to supplect the shadlation back to the entrance suit of the monochromator.

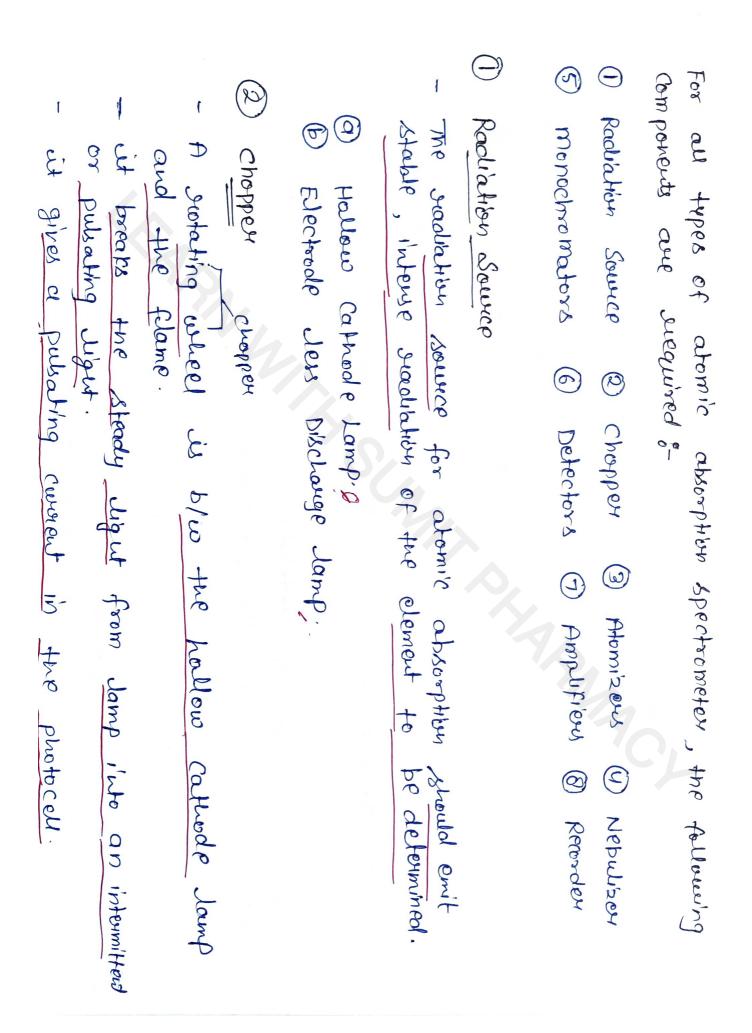
Simulaneous multi-element averlysis of group 1 & of group 1 & - This is suelection flame protemetry have been used	2 In dantitative Analysis, one of	() In Qualitective analysis - out	Detectors - measures the intensity of seadulation familing on it - The photomultiplier detectors and employed control , produce an electric silgual from the seadulation forming on them.
- Rapibly determination of photomics of of group 182. Here an analysis of theme have photometry. Yawious motions theme photometry. Yawious motions have been used in multi elements analysis	one of the most weful	groups 1 and 2.	Detectors measures the intensity of readiation failing on it. The photomultiplier detectors are employed council produce an electric signal from the readiation failing on them.

		س		r t		I	IJ	
or other salt.	of a water sample, it does not matter whether the cadmium exists as a ciloride, nitrate, Suphate	Example, we can determine the total cadmium content	metals in hybrids and is almost independent of the metalling the metal in the sample.	Atomic absorption opertroscopy is a method of elemental analysis. it is particularly useful for determining trace	metals in diquids	spectroscopy u	Atomic absorption Spectroscopy	Unit-2 Chapter-3 ATOMIC ABSORPTION SPECTROSCOPY.

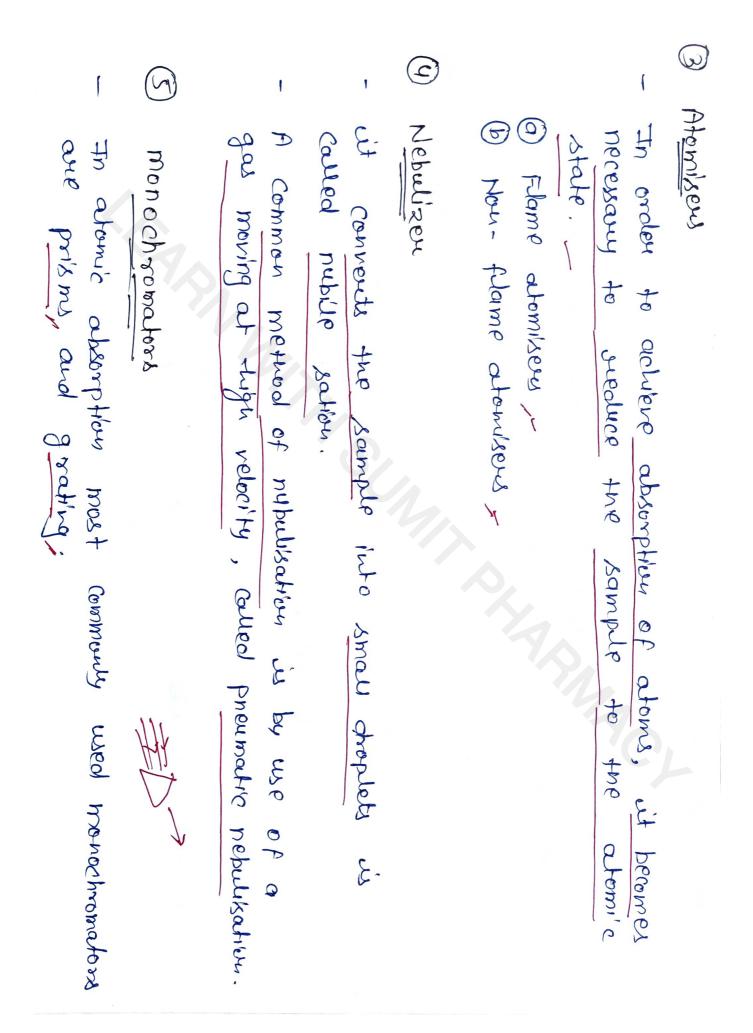
Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube


A Physical Interferences of	- This Technique of ARS is free from Cationic interferences, This is because of the absorption of sharp resonance lines from hallow cathode lamp.	- AAS is clear affected by interferences, when compared to flame photometry.	* Interferences in Atomic Absorption Spectroscopy	• The neutral atoms in gaveous state absorbs radiation at a specific wavelength; r	 Pry Saut is vapourized at high temp. of flame. Then paut/all the gaseous malecules are dissociated into neutral atoms.
-----------------------------	--	--	---	---	---

Examples , Aluminium interferes with emission lines of ca and mg. Na and K mixture interfere with each other.	This is also called cation - cation interference or malecular spectral interference.	- Atomic line interference, occurs due to the presence of other cartions, which can emit sublishion in the same sugion of emission by that of the element	@ spectral line interference	Remedy :- use of gratings will avoid or minimize these interferences.	() Back ground absorption This occurs due to the sample matrix, flame itself, scattering, absorption by similar alkali halides etc.
---	---	---	------------------------------	---	---


Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube


Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

1		ſ	1	(t)		ſ	1	6	ł
chart supconders and used in the	Read out device/ recorder	"Lock-in" amplifiers are preferred.	Amplify the electric current many times which . Comes from detectors.	Amplifier	pomer Supply.	it has good stability if used with a stable	Photomultiplier tube is most suitable for AAS.	Defectors	Converts polychromatic light in menochromatic light.

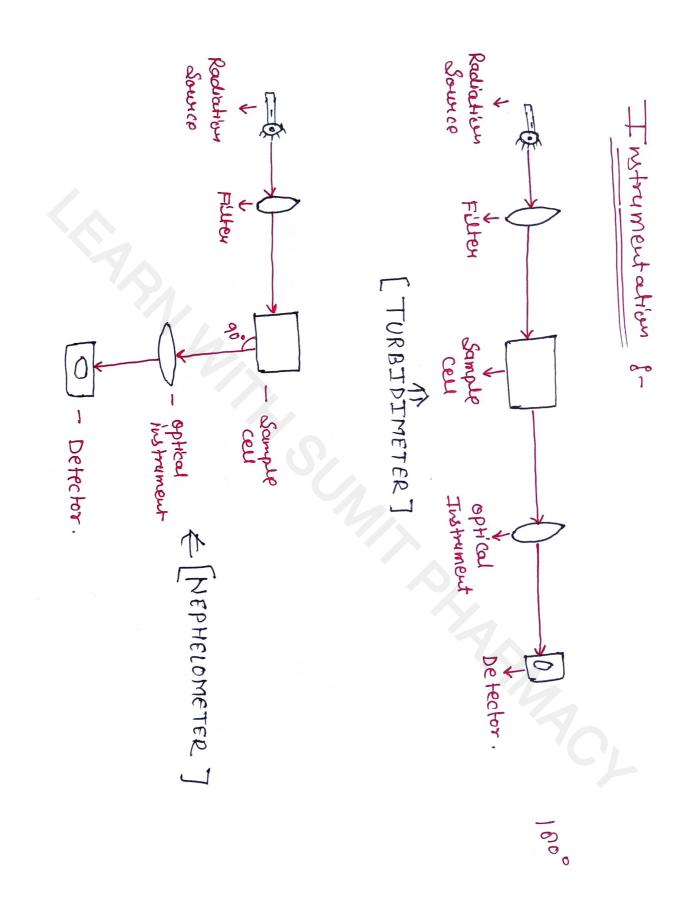
Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

(ft)	6	()	٩	(w)			Θ	H
Determination of lead in petrol.	Determination of Ca, mg, Na and K in blocal serum.	", ", ", in food industry.	Defermination of metallic elements in bibliogital materials.		of readiation absorbed by the sample.	In Quartitative analysis - The technique of quartitative	In qualitative analysis: In AAS, a different hallow	Applicattions

Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

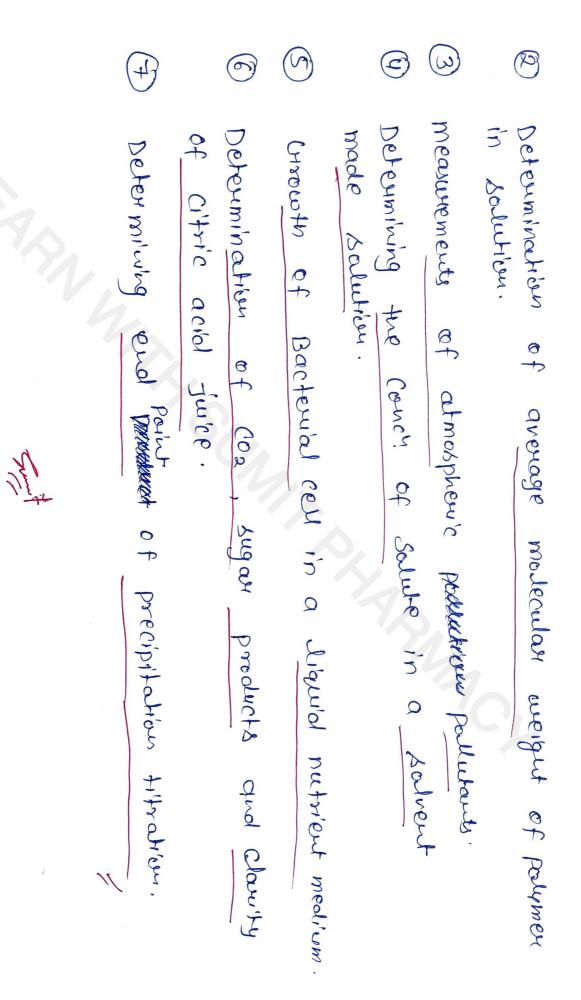
77		- which shange of elements can be analysed.	- The thermal energy of flome in just enough to get neutral atoms. Hence it does not depend on temperature.	- Radiation absorbed by ground state.	Atomic Absorption Spectroscopy	* Difference b/w Atomic Absorption
	can be analysed.	- very few elements especially	- Excited atoms are obtained by thermal energy of plome. Hence, it is temperature dependent.	- Raduation emilted by excited atoms.	Flame photometry	blu Atomic Absorption Spectroscopy and Flame photometry.

Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube


-> Nephometry & At low concentration of a supended suspension, there is uniform scattering, Hence the intensity of scattered light is proportional to concentration.	# Principle	- Twebidimetry, is the measurement of Intensity as a function of Concentration of suspended particles (>100 mg/L) transmitted through the sample	on of suspended particles (<10	# Introduction - Nephlometric and Turbidimetric methods depend on the scattering of light by particles suspended in a	Nephulometric & Tuubiolimetric methods	Unit-2 Chapter-4 NEPHALO TURBIDOMETRY
--	-------------	--	--------------------------------	--	--	---------------------------------------

Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

terred by hutton.	- Concr. 1 Intensity of transmitted light &	Turbidinetry & At War conc." of a supersion, scattering is not uniform and light is scattered in all direction. Hence, it becomes difficult to measure the intensity of scattered stadiation at all angules. Hence the intensity of transmitted light is measured out 180°.	The intensity of scattened light is normally measured at go, it can also be measured at any convenient angles like uso, 60°, 135° etc.
----------------------	---	---	--


Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

Learn With Sumit Pharmacy - A better learning future starts here Subscribe! Us On YouTube

